Math 53 Discussion Problems Nov 5

1. The following integrals are expressed in terms of cylindrical coordinates. For each one of them, describe the region of integration and evaluate the integral.
(a) $\int_{0}^{2 \pi} \int_{0}^{3} \int_{0}^{z / 3} r^{3} d r d z d \theta$
(b) $\int_{0}^{2} \int_{r-2}^{\sqrt{4-r^{2}}} \int_{0}^{2 \pi}(r \sin \theta+1) r d \theta d z d r$
2. The following integrals are expressed in terms of spherical coordinates. For each one of them, describe the region of integration and evaluate the integral.
(a) $\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{\sec \phi}^{2} 3 \rho^{2} \sin \phi d \rho d \phi d \theta$
(b) $\int_{\pi / 6}^{\pi / 3} \int_{\csc \phi}^{2 \csc \phi} \int_{0}^{2 \pi} \rho^{2} \sin \phi d \theta d \rho d \phi$
3. Evaluate the integral $\iint_{R}\left(2 x^{2}-x y-y^{2}\right) d x d y$ where R is the region in the first quadrant bounded by the lines $y=-2 x+4, y=-2 x+7, y=$ $x-2, y=x+1$, using the transformation $u=x-y, v=2 x+y$.
4. Evaluate the integral $\iint_{R}\left(\sqrt{\frac{y}{x}}+\sqrt{x y}\right) d x d y$ where R is the region in the first quadrant bounded by the hyperbolas $x y=1, x y=9$ and the lines $y=x, y=4 x$, using the transformation $x=\frac{u}{v}, y=u v$ with $u>0, v>0$.
5. Evaluate the integral $\iiint_{D}\left(x^{2} y+3 x y z\right) d x d y d z$ where D is the region defined by the inequalities $1 \leq x \leq 2,0 \leq x y \leq 2,0 \leq z \leq 1$, using the transformation $u=x, v=x y, w=3 z$.
